A uniformly second order fast sweeping method for eikonal equations

نویسنده

  • Songting Luo
چکیده

A uniformly second order method with a local solver based on the piecewise linear discontinuous Galerkin formulation is introduced to solve the eikonal equation with Dirichlet boundary conditions. The method utilizes an interesting phenomenon, referred as the superconvergence phenomenon, that the numerical solution of monotone upwind schemes for the eikonal equation is first order accurate on both its value and gradient when the solution is smooth. This phenomenon greatly simplifies the local solver based on the discontinuous Galerkin formulation by reducing its local degrees of freedom from two (1-D) (or three (2-D), or four (3-D)) to one with the information of the gradient frozen. When considering the eikonal equation with pointsource conditions, we further utilize a factorization approach to resolve the source singularities of the eikonal by decomposing it into two parts, either multiplicatively or additively. One part is known and captures the source singularities; the other part serves as a correction term that is differentiable at the sources and satisfies the factored eikonal equations. We extend the second order method to solve the factored eikonal equations to compute the correction term with second order accuracy, then recover the eikonal with second order accuracy. Numerical examples are presented to demonstrate the performance of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniformly Accurate Discontinuous Galerkin Fast Sweeping Methods for Eikonal Equations

In [F. Li, C.-W. Shu, Y.-T. Zhang, H. Zhao, Journal of Computational Physics 227 (2008) 81918208], we developed a fast sweeping method based on a hybrid local solver which is a combination of a discontinuous Galerkin (DG) finite element solver and a first order finite difference solver for Eikonal equations. The method has second order accuracy in the L norm and a very fast convergence speed, b...

متن کامل

A second order discontinuous Galerkin fast sweeping method for Eikonal equations

In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for directly solving ...

متن کامل

A Third Order Fast Sweeping Method with Linear Computational Complexity for Eikonal Equations

Fast sweeping methods are a class of efficient iterative methods for solving steady state hyperbolic PDEs. They utilize the Gauss-Seidel iterations and alternating sweeping strategy to cover a family of characteristics of the hyperbolic PDEs in a certain direction simultaneously in each sweeping order. The first order fast sweeping method for solving Eikonal equations (Zhao in Math Comput 74:60...

متن کامل

High-Order Factorization Based High-Order Hybrid Fast Sweeping Methods for Point-Source Eikonal Equations

The solution for the eikonal equation with a point-source condition has an upwind singularity at the source point as the eikonal solution behaves like a distance function at and near the source. As such, the eikonal function is not differentiable at the source so that all formally high-order numerical schemes for the eikonal equation yield first-order convergence and relatively large errors. Th...

متن کامل

A fast sweeping method for Eikonal equations

In this paper a fast sweeping method for computing the numerical solution of Eikonal equations on a rectangular grid is presented. The method is an iterative method which uses upwind difference for discretization and uses Gauss-Seidel iterations with alternating sweeping ordering to solve the discretized system. The crucial idea is that each sweeping ordering follows a family of characteristics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 241  شماره 

صفحات  -

تاریخ انتشار 2013